Speaker dependent activation keyword detector based on GMM-UBM
نویسندگان
چکیده
In this paper, we present a new method for isolated keyword detection that is meant to activate a personal device from standby state. Instead of using the common method for speech recognition such as Hidden Markov Model (HMM) or Dynamic Time Warping (DTW), we modify a GMM-UBM (Gaussian Mixture Model – Universal Background Model) scheme that is better known in speaker recognition field. Since only one adapted Gaussian mixture is used to represent the keyword, a second layer of check is employed to ensure the right sequence of occurrence within the keyword. This is done by comparing it with the Longest Common Subsequence (LCS) of the highest performing GMM component obtained during the registration phase. Results for a subset of the SpeechDat-Car database are presented to validate the benefit of this modeling against moderate noise level.
منابع مشابه
Text Dependent Speaker Verification Using Un-Supervised HMM-UBM and Temporal GMM-UBM
In this paper, we investigate the Hidden Markov Model (HMM) and the temporal Gaussian Mixture Model (GMM) systems based on the Universal Background Model (UBM) concept to capture temporal information of speech for Text Dependent (TD) Speaker Verification (SV). In TD-SV, target speakers are constrained to use only predefined fixed sentence/s during both the enrollment and the test process. The t...
متن کاملImproving GMM-UBM speaker verification using discriminative feedback adaptation
The Gaussian Mixture Model Universal Background Model (GMM-UBM) system is one of the predominant approaches for text-independent speaker verification, because both the target speaker model and the impostor model (UBM) have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in reje...
متن کاملModeling high-level information by using Gaussian mixture correlation for GMM-UBM based speaker recognition
The Gaussian mixture model-universal background model (GMM-UBM) has been dominant in text-independent speaker recognition tasks. However the conventional GMM-UBM method assumes that each Gaussian mixture is independent and ignores the fact that within Gaussian mixtures, there do exist some useful high-level speaker-dependent characteristics, such as word usage or speaking habits. Based on the G...
متن کاملThe Robustness of GMM-SVM in Real World Applied to Speaker Verification
Gaussian mixture models (GMMs) have proven extremely successful for textindependent speaker verification. The standard training method for GMM models is to use MAP adaptation of the means of the mixture components based on speech from a target speaker. In this work we look into the various models (GMM-UBM and GMM-SVM) and their application to speaker verification. In this paper, features vector...
متن کاملInvestigation of Speaker-Clustered UBMs based on Vocal Tract Lengths and MLLR matrices for Speaker Verification
It is common to use a single speaker independent large Gaussian Mixture Model based Universal Background Model (GMMUBM) as the alternative hypothesis for speaker verification tasks. The speaker models are themselves derived from the UBM using Maximum a Posteriori (MAP) adaptation technique. During verification, log likelihood ratio is calculated between the target model and the GMM-UBM to accep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013